
Text
Preprocessing
and Edit
Distance

Natalie Parde

UIC CS 421

1

What is text preprocessing?

• Organizing, normalizing, and manipulating text so it can be
handled more easily by language processing tasks.

“Have some wine,” the March Hare

said in an encouraging tone.

Alice looked all round the table, but

there was nothing on it but tea. “I don't

see any wine," she remarked.

“There isn't any,” said the March Hare.

- Lewis Carroll, Alice’s Adventures in

Wonderland

have some wine [PERSON 1] said in an

encouraging tone

[PERSON 2] looked all round the table but

there was nothing on it but tea

i don't see any wine she remarked

there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in

Wonderland

Natalie Parde - UIC CS 421 2

Text preprocessing steps will
vary depending on your needs.

Important

Not Important

capitalization

British vs. American spellings (for English text)

Natalie Parde - UIC CS 421 3

This
Week’s
Topics

Natalie Parde - UIC CS 421 4

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

This
Week’s
Topics

Natalie Parde - UIC CS 421 5

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

Regular Expressions

• A formal language for specifying text strings.

• For example: How can we search for any of these?

• Donut

• donut

• Doughnut

• doughnut

• Donuts

• doughnuts

Natalie Parde - UIC CS 421 6

Regular Expression Terminology

Natalie Parde - UIC CS 421 7

Regex: Common abbreviation for regular expression

Disjunction: Logical OR

Range: All characters in a sequence from c1-c2

Negation: Logical NOT

Scope: Indicates to which characters the regex applies

Anchor: Matches the beginning or end of a string

Disjunctions and
Ranges

• Disjunction: Letters
inside square
brackets [az]

• Range: Hyphen
between the first
and last characters
in the range [a-z]

Natalie Parde - UIC CS 421 8

Pattern Matches Example

[dD]onut donut,

Donut

This morning would

be better with a

donut.

[0123456789] Any digit This morning would

be better with 5

donuts.

[A-Z] An

uppercase

letter

Donuts are an

excellent way to

start the day.

[0-9] Any digit I just ate 5 donuts.

Negation in
Disjunction

Pattern Matches Example

[^dD]onut Any letter

except “d” or

“D” before

the

sequence

“onut”

This morning

would be better

with a coconut.

[^A-Z] Not an

uppercase

letter

Donuts are an

excellent way to

start the day.

[^^] Not a caret What is your

favorite kind of

donut?

D^o The pattern

“D^o”

Is D^onut a good

name for my donut

shop?

More about
disjunctions!

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

• The pipe | indicates the union (logical
OR) of two regular expressions

• a|b|c is equivalent to [abc]

10

Pattern Matches Example

d|D “d” or “D” Good morning!

Special
Characters in

Regular
Expressions

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

• *: Means that there must be 0 or more occurrences of
the preceding expression

• .: A wildcard that can mean any character

• +: Means that there must be 1 or more occurrences of
the preceding expression

• ?: Means that there must be 0 or 1 occurrences of the
preceding expression

• {m}: Means that there must be m instances of the
preceding expression

• {m,n}: Means that there must be between m and n
instances of the preceding expression

• (abc): Means that the operation should be applied to
the specified sequence

• \: Used to escape special characters so that the
regular expression searches for their literal form

11

Regular Expressions: Special
Characters

Pattern Matches Example

donuts* “donut” or “donuts” or “donutss” or

“donutsss”….

This morning I had many donuts.

.onut Any character followed by “onut” Can I have a coconut donut?

donuts+ “donuts” or “donutss” or “donutsss”…. Do you want one donut or two donuts?

donuts? “donut” or “donuts” Do you want one donut or two donuts?

donuts{1} “donuts” Do you want one donut or two donuts?

donuts{0,1} “donut” or “donuts” Do you want one donut or two donuts?

.o(nut)? Any character followed by “o” or “onut” Can I have a disco donut?

donut\. “donut.” Please give me one donut.

Natalie Parde - UIC CS 421 12

Regular Expressions: Anchors

• Indicate that a pattern should be matched only at the beginning
or end of a string

Natalie Parde - UIC CS 421

Pattern Matches Example

^Donuts “Donuts” only when it is at the beginning of a string Donuts are an excellent way to

start the day.

donuts$ “donuts” only when it is at the end of the string I just ate 5 donuts

13

Shorthand
Character Classes

• Many programming languages support several
predefined, shorthand character classes for regular
expressions:

• \d: Any digit

• \D: Any non-digit

• \s: Any whitespace

• \S: Any non-whitespace

• \w: Any alphanumeric character

• \W: Any non-alphanumeric character

• \b: Empty string or certain characters at word
boundaries

• Can be very helpful, but make sure to understand
what patterns they’re matching before using them

• May be defined differently from what you need!

Natalie Parde - UIC CS 421 14

More about
shorthand
character
classes….
• Can be used inside or outside

disjunctions

• Can be negated

• Note that different
programming languages may
vary in which shorthand
character classes they offer,
and how they implement them

Natalie Parde - UIC CS 421 15

Regular expressions are often trickier
than they initially seem….

the Fails on: The

[tT]he Fails on: other

^[tT]he$ Fails on: Grab the donut!

16

Create a regular expression to find the set of strings containing the word the, ignoring case.

Errors

• When we match strings that we didn’t
want to match, we have false positive
(Type I) errors

• When we don’t match strings that we
wanted to match, we have false
negative (Type II) errors

Natalie Parde - UIC CS 421 17

Errors

• This is a recurring theme in NLP!

• Regardless of what application we’re
developing, we often try to do two things to
improve performance:

• Increase accuracy or precision
(minimizing false positives)

• Increase coverage or recall
(minimizing false negatives)

Natalie Parde - UIC CS 421 18

Regular
Expressions:
Takeaway Points

• Regular expressions are powerful
and have many different uses

• Text tokenization

• Text normalization

• Feature extraction

• They allow us to search for specific
strings of text using disjunctions,
negations, and special characters

Natalie Parde - UIC CS 421 19

Assignment
1 Connection

Write regular expressions for the
specified formal languages

Natalie Parde - UIC CS 421 20

This
Week’s
Topics

Natalie Parde - UIC CS 421 21

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

Regular expressions can be matched
using finite state automata.

• Computational models of states and the transitions between them

• Can be used to model regular expressions, but are also used in other
applications that function by transitioning between finite states

• Dialogue systems

• Morphological parsing

• Terminology:

• Singular: Finite State Automaton (FSA)

• Plural: Finite State Automata (FSAs)

Natalie Parde - UIC CS 421 22

Key
Components

• Finite set of states

• Start state

• Final state

• Set of transitions from one state to another

Natalie Parde - UIC CS 421 23

How do FSAs work?

• For a given sequence of items (e.g., characters or words) that you hope to
match, begin in the start state

• If the next item in the sequence can be matched by transitioning to
another state from the current state, make that transition

• Repeat

• If no transitions are possible, stop

• If the state you stopped in is a final state, accept the sequence

Natalie Parde - UIC CS 421 24

FSAs are often represented
graphically.

• Nodes = states

• Arcs = transitions

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

25

What do we
know about
this FSA?

• Five states

• q0 is the start state

• q4 is the final (accept) state

• Five transitions

• Alphabet = {a, b, !}

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

26

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

27

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
28

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
29

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
30

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
31

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
32

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
33

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
34

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
35

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
36

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
37

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
38

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
39

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
40

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
41

Note: More than one FSA can
correspond to the same test string
in a regular language!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

Test String:

baaa!

Test String:

baaa!

42

Formal
Definition

• A finite state automaton can be specified
by enumerating the following properties:

• The set of states, Q

• A finite alphabet, Σ

• A start state, q0

• A set of accept/final states, F⊆Q

• A transition function or transition
matrix between states, δ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ,
δ(q,i) returns a new state q’∈Q.

43

Example: FSA for Dollar Amounts

Natalie Parde - UIC CS 421

q0 q1 q2 q4 q5 q6 q7

q3

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

Eleven

Twelve

Thirteen

Fourteen

Fifteen

Sixteen

Seventeen

Eighteen

Nineteen

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

cents

dollars

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

Eleven

Twelve

Thirteen

Fourteen

Fifteen

Sixteen

Seventeen

Eighteen

Nineteen

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

cents

Accept States
44

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

q0 q1 q2 q3 q4

b a a

a

!

45

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

46

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

47

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1  q2

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

48

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1  q2  

q2  q3

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

49

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

50

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3 q4

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

51

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3 q4 

q4    ☺C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Accept!

q0 q1 q2 q3 q4

b a a

a

!

52

State
transition
tables
simplify the
process of
determining
whether
your input
will be
accepted by
the FSA.

Natalie Parde - UIC CS 421 53

• For a given sequence of items to match,
begin in the start state with the first
item in the sequence

• Consult the table …is a transition to
any other state permissible with the
current item?

• If so, move to the state indicated by
the table

• If you make it to the end of your
sequence and to a final state, accept

Algorithmically, this looks like:

index ← beginning of sequence

current_state ← initial state of FSA

loop:

 if end of sequence has been reached:

 if current_state is an accept state:

 return accept

 else:

 return reject

 else if transition_table[current_state, sequence[index]] is empty:

 return reject

 else:

 current_state ← transition_table[current_state, sequence[index]]

 index ← index + 1

end

Natalie Parde - UIC CS 421 54

Deterministic vs. Non-Deterministic
FSAs

Natalie Parde - UIC CS 421 55

Deterministic FSA: At
each point in processing
a sequence, there is one
valid transition that can
be made (no choices!)

Non-Deterministic
FSA: At one or more
points in processing a
sequence, there are
multiple permissible
transitions (choices!)

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

56

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

If input is a, do this

If input is !, do this

Deterministic! q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

57

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

If input is a, do this

If input is !, do this

Deterministic!

If input is a, do ?
Non-Deterministic!

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

58

Every non-
deterministic
FSA can be
converted to a
deterministic
FSA.

• Both are equally powerful

• Deterministic FSAs can accept as many
languages as non-deterministic ones

59

Non-
Deterministic
FSAs: How to
check for
input
acceptance?

60

Non-
Deterministic
FSA Search
Assumptions

Natalie Parde - UIC CS 421 61

There is at least one path through
the FSA for inputs that are
members of the language defined
by the FSA

Not all paths through the FSA for
an “accept” input lead to an accept
state

No paths through the FSA lead to
an accept state for inputs that are
not valid members of the language

Non-
Deterministic
FSA Search

N
a
ta

lie
 P

a
rd

e
 -

 U
IC

 C
S

 4
2
1

• States in the search space are
pairings of sequence indices and
states in the FSA

• By keeping track of which states have
and have not been explored, we can
systematically explore all the paths
through an FSA given an input

62

Non-
Deterministic

FSA Search
Assumptions

• Success: Path is found for a given input
that ends in an accept

• Failure: All possible paths for a given input
lead to failure

63

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

64

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

65

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

66

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

67

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

68

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

69

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

70

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

71

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

72

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

73

Additional Characteristics of FSAs

• You can apply set operations to any FSA

• Union

• Intersection

• Concatenation

• Negation

• For non-deterministic FSAs, first convert to a deterministic FSA

• To do so, you may need to utilize an ϵ transition

• ϵ transition: Move from one state to another without consuming an item
from the input sequence

Natalie Parde - UIC CS 421 74

Summary:
Regular
Expressions
and Finite
State
Automata

N
a
ta

lie
 P

a
rd

e
 -

 U
IC

 C
S

 4
2
1

• Regular expressions allow us to capture
patterns defined by regular languages

• Complex regular expressions may be
most effectively implemented using
disjunction, negation, or other special
characters

• FSAs are computational models that
describe regular languages

• To determine whether an input item is a
member of an FSA’s language, you can
process it sequentially from the start to
(hopefully) the final state

• State transitions in FSAs can be
represented using tables

• FSAs can be either deterministic or non-
deterministic

75

This
Week’s
Topics

Natalie Parde - UIC CS 421 76

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

Finite State
Transducers

Natalie Parde - UIC CS 421

Finite State Transducer (FST): A special
type of FSA that describes mappings
between two sets of items

Each transition is defined by an (input,
output) pair

FSAs can be converted to FSTs by
labeling each arc with input and output
items (e.g., a:b for an input of a and an
output of b)

77

Example: Simple FST

Start Final

Natalie Parde - UIC CS 421

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

78

Formal
Definition

• A finite state transducer can be specified by
enumerating the following properties:

• The set of states, Q

• A finite input alphabet, Σ

• A finite output alphabet, Δ

• A start state, q0

• A set of accept/final states, F⊆Q

• A transition function or transition matrix
between states, δ(q,i)

• An output function giving the set of
possible outputs for each state and input,
σ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ,
δ(q,i) returns a new state q’∈Q.

Natalie Parde - UIC CS 421 79

Formal
Properties

• FSTs are compositional:

• Letting T1 be an FST from I1 to O1, and

• Letting T2 be an FST from I2 to O2,

• The two FSTs can be composed such that
the resulting FST maps directly from I1 to
O2

• FSTs can be inverted:

• Letting T be an FST that maps from I to O,
its inversion (T-1) will map from O to I.

Natalie Parde - UIC CS 421 80

q0

a:b

q1

a:b

∘ q0

b:c

q1

b:c

= q0

a:c

q1

a:c

Deterministic vs. Non-
Deterministic FSTs

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

Just like FSAs, FSTs can
be non-deterministic

…one input can be
translated to many possible

outputs!

Unlike FSAs, not all non-
deterministic FSTs can be

converted to
deterministic FSTs

FSTs with underlying
deterministic FSAs (at any

state, a given input maps to
at most one transition out of

the state) are called
sequential transducers

81

Examples: Non-Deterministic and
Sequential (Deterministic) Transducers

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

Non-Deterministic

q0 q1

a:b b:ϵ

b:b

a:ba

Sequential

Natalie Parde - UIC CS 421 82

When
can we
use FSTs
in NLP?

• Case example: Morphological parsing

• The task of recognizing the component
morphemes of words (e.g., foxes → fox +
es) and building structured representations
of those components

• Morphemes:

• Small meaningful units that make up words

• Stems: The core meaning-bearing units

• Affixes: Bits and pieces that adhere to
stems and add information

• -ed

• -ing

• -s

Natalie Parde - UIC CS 421 83

Why is morphological parsing
necessary?

• Useful for breaking language into more easily interpretable parts

• Morphemes can be productive

• Example: -ing attaches to almost every verb, including brand new words

• “Why are you Instagramming that?”

• Some languages are very morphologically complex

• Uygarlastiramadiklarimizdanmissinizcasina

• Uygar “civilized” + las “become”

• + tir “cause” + ama “not able”

• + dik “past” + lar “plural”

• + imiz “p1pl” + dan “abl”

• + mis “past” + siniz “2pl” + casina “as if”

Natalie Parde - UIC CS 421 84

Finite State
Morphological
Parsing

cats cat +N +PL

Goal: Take input surface realizations and produce
morphological parses as output

Natalie Parde - UIC CS 421

Surface Text Morphological Parse

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

goose goose +N +SG

merging merge +V +PresPart

caught catch +V +Past

85

Finite State Morphological
Parsing
reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

q0

q1reg-noun

q2

q3

q4

q5

q6

q7

irreg-sg-noun

irreg-pl-noun

ϵ:+N

ϵ:+N

ϵ:+N

e?s$:+PL

$:+SG

$:+SG

$:+PL

Natalie Parde - UIC CS 421 86

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes

87

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes f

88

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fo

89

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox

90

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox +N

91

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox +N

92

Finite State Morphological
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox +N +PL

93

Key
Takeaways:
Finite State

Transducers

N
a

ta
lie

 P
a

rd
e

 - U
IC

 C
S

 4
2
1

• FSTs are FSAs that describe
mappings between two sets

• All non-deterministic FSAs can be
converted to deterministic versions,
but all non-deterministic FSTs cannot

• FSTs with underlying deterministic
FSAs are called sequential
transducers

• FSTs are particularly useful for
morphological parsing

94

This
Week’s
Topics

Natalie Parde - UIC CS 421 95

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

What are some other
ways that we can
preprocess text?

• Text tokenization is an important first step
for most NLP tasks

• Often implemented using regular expressions

• Typical NLP pipeline:

• Segmenting sentences (if applicable)

• Tokenizing words

• Normalizing word formats (e.g.,
favourite → favorite)

Natalie Parde - UIC CS 421 96

Sentence Segmentation and Text
Tokenization

Alice looked all round the table, but there was nothing on it but tea. “I don't see any wine," she remarked.

Natalie Parde - UIC CS 421 97

Tokens

Sentence Segments

How many words in a
string of text?

• I do uh main- mainly business data processing

• Fragments, filled pauses

• Seuss’s cat in the hat is different from other
cats!

• Lemma: Words with the same stem,
coarse-grained part of speech, and
general word sense

• cat and cats = same lemma

• Wordform: The full inflected surface form
of a word

• cat and cats = different wordforms

Natalie Parde - UIC CS 421 98

Types vs. Tokens

Alice looked all round the table, but there was nothing
on it but tea.

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?

• 14 tokens (or 16 if punctuation is tokenized
separately)

• 13 types (or 15 if punctuation is tokenized
separately)

Natalie Parde - UIC CS 42199

Type and Token Counts
in Popular Datasets

N = number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

Natalie Parde - UIC CS 421 100

Dataset
Tokens =

N

Types =

|V|

Switchboard phone

conversations

2.4 million 20K

Shakespeare 884K 31K

Google N-grams 1 trillion 13 million

Tokenization requires many
individual decisions!

• Finland’s capital → Finland ’s or Finland’s ?

• isn’t → is not or isn ’t or is n’t ?

• Hewlett-Packard → Hewlett Packard or Hewlett-Packard or
 Hewlett- Packard or Hewlett -Packard ?

• San Francisco → one token or two?

• a.m., Ph.D. → ??

Natalie Parde - UIC CS 421 101

Some of these decisions are
language-specific:

• L'ensemble → one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

Contractions

• Lebensversicherungsgesellschaftsangestellter

• life insurance company employee

• 莎拉波娃现在居住在美国东南部的佛罗里达。

• Sharapova now lives in Florida in the southeastern United States.

Tokens Not Delineated by Whitespace

Natalie Parde - UIC CS 421 102

Tokenization
in the Age
of LLMs

• Moving beyond word boundaries to
subwords and bytes

• Goal: Balance vocabulary size,
coverage, and efficiency

• With LLMs, tokenization directly affects
model cost and behavior

Natalie Parde - UIC CS 421 103

From
Words to
Subwords

• Word-level tokenization: May
lead to out-of-vocabulary
(OOV) problems

• Subword tokenization breaks
words into frequent pieces so
that they can be recombined
efficiently

• Example: “unhappiness” → [“un”,
“happi”, “ness”]

Natalie Parde - UIC CS 421 104

Byte-Pair Encoding

• Common in recent LLMs

• Merges frequent character pairs to form subwords

• Learns which character pairs are frequent using large text
corpora

• Produces statistically common but non-linguistic units

Natalie Parde - UIC CS 421 105

l o w e r lo wer

Tokenization
in Practice

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

106

• ["I", "can't", "believe", "it's",
"already", "September", "!"]

Word Tokenizer

• ["I", "can", "##’”, "t", "believe", "it",
"##'", "s", "already", "September",
"!"]

Subword Tokenizer

• ["I", " can", ”’”, “t”, " believe", " it",
"'", "s", " already", " September",
"!"]

Byte-Pair Encoding

Why Tokenization
Decisions are Important
in LLMs

• Vocabulary size trade-offs:

• Large vocabulary → Fewer tokens per input
and bigger embedding table (more in a few
weeks!)

• Smaller vocabulary → More tokens per input
and longer token sequences

• The number of tokens you have can impact your
compute cost

• Token length limits also can constrain prompt
engineering

• Potential additional complication: Same
sentence may tokenize differently across
models

Natalie Parde - UIC CS 421 107

Text Normalization

• Normalization: Manipulating text such that all forms of the same word match
(e.g., U.S.A. = USA, flavour = flavor, etc.)

• To normalize text, you must define equivalence classes

• Example: “.” characters in a term → not important

• Words with the same characters but different capitalization are often considered
equivalent to one another (case folding)

• Example: Hello = hello

• Not a perfect strategy!

• US != us

• Useful equivalence classes vary depending on task

• Capitalization can be very important in sentiment analysis

Natalie Parde - UIC CS 421 108

Lemmatization

• Reduce inflections or variant forms to base
form

• am, are, is → be

• car, cars, car's, cars' → car

• the boy's cars are different colors → the
boy car be differ color

• Tricky because you need to find the correct
dictionary headword form

Natalie Parde - UIC CS 421 109

Stemming

• Automatically reduces words to their stems
using simple rules

• language dependent

• Example: {automate(s), automatic,
automation} → automat

• Pros: Very quick, simple to implement

• Cons: Groups together some words that don’t
really mean the same thing, and doesn’t
group together some words that do mean the
same thing

• {meanness, meaning} → mean

• {goose} → goos, {geese} → gees

Natalie Parde - UIC CS 421 110

Porter Stemming

• Step 1a

• sses → ss caresses → caress

• ies → i ponies → poni

• ss → ss caress → caress

• s → ø cats → cat

• Step 1b

• (*v*)ing → ø walking → walk

• sing → sing

• (*v*)ed → ø plastered → plaster

• …

• Step 2 (for long stems)

• ational→ ate relational→ relate

• izer→ ize digitizer → digitize

• ator→ ate operator → operate

• …

• Step 3 (for longer stems)

• al → ø revival → reviv

• able → ø adjustable → adjust

• ate → ø activate → activ

• …

Natalie Parde - UIC CS 421 111

Much like tokenization, stemming

methods generally need to be

customized for specific languages!

Sentence
Segmentation

• !, ? are relatively unambiguous

• . is more ambiguous

• Sentence boundary

• Abbreviations like Inc. or Dr.

• Numbers like .02% or 4.3

Natalie Parde - UIC CS 421 112

This
Week’s
Topics

Natalie Parde - UIC CS 421 113

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to
preprocess text

Edit distance

We know how to preprocess
strings now …but how can we

find the distance between
them?

Popular string (or other sequence) comparison technique:

• Minimum edit distance

Natalie Parde - UIC CS 421 114

Edit Distance

• Simple way to answer the
question: How similar are two
strings?

• Note: This distance is not
necessarily associated with
semantic distance

• Also useful for evaluating
machine translation and word
error rate

Natalie Parde - UIC CS 421 115

Minimum
Edit
Distance

• Minimum number of editing
operations needed to
transform one string into
another

• Possible editing operations:

• Insertion

• Deletion

• Substitution

116

Minimum Edit
Distance

• Assuming we have the two
aligned strings on the right:

• If each operation has a cost
of 1 (Levenshtein distance)

• Distance between these is 5

• If substitutions cost 2
(alternative also proposed by
Levenshtein)

• Distance between them is 8

I N T E * N T I O N

* E X E C U T I O N

d s s i s

Natalie Parde - UIC CS 421 117

How to find the
minimum edit distance?

Natalie Parde - UIC CS 421

• Search for a path
(sequence of edits) from
the start string to the final
string:

• Initial state: the word
we’re transforming

• Operators: insert,
delete, substitute

• Goal state: the word
we’re trying to get to

• Path cost: what we
want to minimize (the
number of edits)

118

However,
the search
space of
all edit
sequences
is huge!

119

Formal
Definition:
Minimum
Edit
Distance

• For two strings

• X of length n

• Y of length m

• We define D(i,j) as the edit distance
between X[1..i] and Y[1..j]

• X[1..i] = the first i characters of X

• The edit distance between X and Y is
thus D(n,m)

120

Intuition:
Dynamic
Programming

• Minimum edit distance can be solved
using dynamic programming

• Stores intermediate outputs in a
table

• Intuition: If some string B is in the
optimal path from string A to string
C, then that path must also include
the optimal path from A to B

• D(n,m) is computed tabularly,
combining solutions to subproblems

• Bottom-up

• We compute D(i,j) for small i,j

• And compute larger D(i,j) based on
previously computed smaller
values

• i.e., compute D(i,j) for all i (0 <
i < n) and j (0 < j < m)

Natalie Parde - UIC CS 421 121

Algorithmically, this looks like:

• Initialization
D(i,0) = costins * i

D(0,j) = costdel * j

• Algorithm:
For each i = 1…n

 For each j = 1…m

 D(i-1,j) + costins

 D(i,j)= min D(i,j-1) + costdel

 D(i-1,j-1) + costsub; if X(i) ≠ Y(j)

 0; if X(i) = Y(j)

• Termination:
D(N,M) is distance

Natalie Parde - UIC CS 421
122

N

O

I

T

N

E

T

N

I

#

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421 123

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421 124

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
125

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
126

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
127

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2 3 4 5 6 7 6

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
128

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
129

Backtrace for Computing
Alignments

• We know the minimum edit distance now …but what is the alignment
between the two strings?

• We can figure this out by maintaining a backtrace

• For each new cell, remember where we came from!

• D(i-1,j) ?

• D(i,j-1) ?

• D(i-1,j-1) ?

• Once we reach the end of the table (upper right corner), we can trace
backward using these pointers to figure out the alignment

Natalie Parde - UIC CS 421 130

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
131

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
132

Algorithmically, this looks like:

• Base conditions: Termination:

D(i,0) = costins * i D(0,j) = costdel * j D(N,M) is distance

• Algorithm:

For each i = 1…n

 For each j = 1…m

 D(i-1,j) + costins

 D(i,j)= min D(i,j-1) + costdel

 D(i-1,j-1) + costsub; if X(i) ≠ Y(j)

 0; if X(i) = Y(j)

 LEFT (INSERT)

 ptr(i,j)= DOWN (DELETE)

 DIAG (SUBSTITUTE)

Natalie Parde - UIC CS 421 133

Assignment
1
Connection

Implement minimum edit
distance!

Natalie Parde - UIC CS 421 134

Summary

	Slide 1: Text Preprocessing and Edit Distance
	Slide 2: What is text preprocessing?
	Slide 3: Text preprocessing steps will vary depending on your needs.
	Slide 4: This Week’s Topics
	Slide 5: This Week’s Topics
	Slide 6: Regular Expressions
	Slide 7: Regular Expression Terminology
	Slide 8: Disjunctions and Ranges
	Slide 9: Negation in Disjunction
	Slide 10: More about disjunctions!
	Slide 11: Special Characters in Regular Expressions
	Slide 12: Regular Expressions: Special Characters
	Slide 13: Regular Expressions: Anchors
	Slide 14: Shorthand Character Classes
	Slide 15: More about shorthand character classes….
	Slide 16: Regular expressions are often trickier than they initially seem….
	Slide 17: Errors
	Slide 18: Errors
	Slide 19: Regular Expressions: Takeaway Points
	Slide 20: Assignment 1 Connection
	Slide 21: This Week’s Topics
	Slide 22: Regular expressions can be matched using finite state automata.
	Slide 23: Key Components
	Slide 24: How do FSAs work?
	Slide 25: FSAs are often represented graphically.
	Slide 26: What do we know about this FSA?
	Slide 27: Regex that this FSA matches: baa+!
	Slide 28: Regex that this FSA matches: baa+!
	Slide 29: Regex that this FSA matches: baa+!
	Slide 30: Regex that this FSA matches: baa+!
	Slide 31: Regex that this FSA matches: baa+!
	Slide 32: Regex that this FSA matches: baa+!
	Slide 33: Regex that this FSA matches: baa+!
	Slide 34: Regex that this FSA matches: baa+!
	Slide 35: Regex that this FSA matches: baa+!
	Slide 36: Regex that this FSA matches: baa+!
	Slide 37: Regex that this FSA matches: baa+!
	Slide 38: Regex that this FSA matches: baa+!
	Slide 39: Regex that this FSA matches: baa+!
	Slide 40: Regex that this FSA matches: baa+!
	Slide 41: Regex that this FSA matches: baa+!
	Slide 42: Note: More than one FSA can correspond to the same test string in a regular language!
	Slide 43: Formal Definition
	Slide 44: Example: FSA for Dollar Amounts
	Slide 45: State transitions in FSAs can be represented using tables.
	Slide 46: State transitions in FSAs can be represented using tables.
	Slide 47: State transitions in FSAs can be represented using tables.
	Slide 48: State transitions in FSAs can be represented using tables.
	Slide 49: State transitions in FSAs can be represented using tables.
	Slide 50: State transitions in FSAs can be represented using tables.
	Slide 51: State transitions in FSAs can be represented using tables.
	Slide 52: State transitions in FSAs can be represented using tables.
	Slide 53: State transition tables simplify the process of determining whether your input will be accepted by the FSA.
	Slide 54: Algorithmically, this looks like:
	Slide 55: Deterministic vs. Non-Deterministic FSAs
	Slide 56: Deterministic or Non-Deterministic?
	Slide 57: Deterministic or Non-Deterministic?
	Slide 58: Deterministic or Non-Deterministic?
	Slide 59: Every non-deterministic FSA can be converted to a deterministic FSA.
	Slide 60: Non-Deterministic FSAs: How to check for input acceptance?
	Slide 61: Non-Deterministic FSA Search Assumptions
	Slide 62: Non-Deterministic FSA Search
	Slide 63: Non-Deterministic FSA Search Assumptions
	Slide 64: Example: Non-Deterministic FSA Search
	Slide 65: Example: Non-Deterministic FSA Search
	Slide 66: Example: Non-Deterministic FSA Search
	Slide 67: Example: Non-Deterministic FSA Search
	Slide 68: Example: Non-Deterministic FSA Search
	Slide 69: Example: Non-Deterministic FSA Search
	Slide 70: Example: Non-Deterministic FSA Search
	Slide 71: Example: Non-Deterministic FSA Search
	Slide 72: Example: Non-Deterministic FSA Search
	Slide 73: Example: Non-Deterministic FSA Search
	Slide 74: Additional Characteristics of FSAs
	Slide 75: Summary: Regular Expressions and Finite State Automata
	Slide 76: This Week’s Topics
	Slide 77: Finite State Transducers
	Slide 78: Example: Simple FST
	Slide 79: Formal Definition
	Slide 80: Formal Properties
	Slide 81: Deterministic vs. Non-Deterministic FSTs
	Slide 82: Examples: Non-Deterministic and Sequential (Deterministic) Transducers
	Slide 83: When can we use FSTs in NLP?
	Slide 84: Why is morphological parsing necessary?
	Slide 85: Finite State Morphological Parsing
	Slide 86: Finite State Morphological Parsing
	Slide 87: Finite State Morphological Parsing
	Slide 88: Finite State Morphological Parsing
	Slide 89: Finite State Morphological Parsing
	Slide 90: Finite State Morphological Parsing
	Slide 91: Finite State Morphological Parsing
	Slide 92: Finite State Morphological Parsing
	Slide 93: Finite State Morphological Parsing
	Slide 94: Key Takeaways: Finite State Transducers
	Slide 95: This Week’s Topics
	Slide 96: What are some other ways that we can preprocess text?
	Slide 97: Sentence Segmentation and Text Tokenization
	Slide 98: How many words in a string of text?
	Slide 99: Types vs. Tokens
	Slide 100: Type and Token Counts in Popular Datasets
	Slide 101: Tokenization requires many individual decisions!
	Slide 102: Some of these decisions are language-specific:
	Slide 103: Tokenization in the Age of LLMs
	Slide 104: From Words to Subwords
	Slide 105: Byte-Pair Encoding
	Slide 106: Tokenization in Practice
	Slide 107: Why Tokenization Decisions are Important in LLMs
	Slide 108: Text Normalization
	Slide 109: Lemmatization
	Slide 110: Stemming
	Slide 111: Porter Stemming
	Slide 112: Sentence Segmentation
	Slide 113: This Week’s Topics
	Slide 114: We know how to preprocess strings now …but how can we find the distance between them?
	Slide 115: Edit Distance
	Slide 116: Minimum Edit Distance
	Slide 117: Minimum Edit Distance
	Slide 118: How to find the minimum edit distance?
	Slide 119: However, the search space of all edit sequences is huge!
	Slide 120: Formal Definition: Minimum Edit Distance
	Slide 121: Intuition: Dynamic Programming
	Slide 122: Algorithmically, this looks like:
	Slide 123: The Edit Distance Table
	Slide 124: The Edit Distance Table
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130: Backtrace for Computing Alignments
	Slide 131
	Slide 132
	Slide 133: Algorithmically, this looks like:
	Slide 134: Assignment 1 Connection
	Slide 135: Summary

