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What is text preprocessing?

• Organizing, normalizing, and manipulating text so it can be 
handled more easily by language processing tasks.

“Have some wine,” the March Hare 

said in an encouraging tone.

Alice looked all round the table, but 

there was nothing on it but tea. “I don't 

see any wine," she remarked.

“There isn't any,” said the March Hare.

- Lewis Carroll, Alice’s Adventures in 

Wonderland

have some wine [PERSON 1] said in an 

encouraging tone

[PERSON 2] looked all round the table but 

there was nothing on it but tea 

i don't see any wine she remarked

there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in 

Wonderland
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Text preprocessing steps will 
vary depending on your needs.

Important

Not Important

capitalization

British vs. American spellings (for English text)
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Week’s 
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Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to 
preprocess text

Edit distance
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Regular Expressions

• A formal language for specifying text strings.

• For example: How can we search for any of these?

• Donut

• donut

• Doughnut

• doughnut

• Donuts

• doughnuts
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Regular Expression Terminology
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Regex: Common abbreviation for regular expression

Disjunction: Logical OR

Range: All characters in a sequence from c1-c2

Negation: Logical NOT

Scope: Indicates to which characters the regex applies

Anchor: Matches the beginning or end of a string



Disjunctions and 
Ranges

• Disjunction: Letters 
inside square 
brackets [az]

• Range: Hyphen 
between the first 
and last characters 
in the range [a-z]
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Pattern Matches Example

[dD]onut donut, 

Donut

This morning would 

be better with a 

donut.

[0123456789] Any digit This morning would 

be better with 5 

donuts.

[A-Z] An 

uppercase 

letter

Donuts are an 

excellent way to 

start the day.

[0-9] Any digit I just ate 5 donuts.



Negation in 
Disjunction

Pattern Matches Example

[^dD]onut Any letter 

except “d” or 

“D” before 

the 

sequence 

“onut”

This morning 

would be better 

with a coconut.

[^A-Z] Not an 

uppercase 

letter

Donuts are an 

excellent way to 

start the day.

[^^] Not a caret What is your 

favorite kind of 

donut?

D^o The pattern 

“D^o”

Is D^onut a good 

name for my donut 

shop?



More about 
disjunctions!
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• The pipe | indicates the union (logical 
OR) of two regular expressions

• a|b|c is equivalent to [abc]
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Pattern Matches Example

d|D “d” or “D” Good morning!



Special 
Characters in 

Regular 
Expressions

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

• *: Means that there must be 0 or more occurrences of 
the preceding expression

• .: A wildcard that can mean any character

• +: Means that there must be 1 or more occurrences of 
the preceding expression

• ?: Means that there must be 0 or 1 occurrences of the 
preceding expression

• {m}: Means that there must be m instances of the 
preceding expression

• {m,n}: Means that there must be between m and n 
instances of the preceding expression

• (abc): Means that the operation should be applied to 
the specified sequence

• \: Used to escape special characters so that the 
regular expression searches for their literal form

11



Regular Expressions: Special 
Characters

Pattern Matches Example

donuts* “donut” or “donuts” or “donutss” or 

“donutsss”….

This morning I had many donuts.

.onut Any character followed by “onut” Can I have a coconut donut?

donuts+ “donuts” or “donutss” or “donutsss”…. Do you want one donut or two donuts?

donuts? “donut” or “donuts” Do you want one donut or two donuts?

donuts{1} “donuts” Do you want one donut or two donuts?

donuts{0,1} “donut” or “donuts” Do you want one donut or two donuts?

.o(nut)? Any character followed by “o” or “onut” Can I have a disco donut?

donut\. “donut.” Please give me one donut.
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Regular Expressions: Anchors

• Indicate that a pattern should be matched only at the beginning 
or end of a string

Natalie Parde - UIC CS 421

Pattern Matches Example

^Donuts “Donuts” only when it is at the beginning of a string Donuts are an excellent way to 

start the day.

donuts$ “donuts” only when it is at the end of the string I just ate 5 donuts
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Shorthand 
Character Classes

• Many programming languages support several 
predefined, shorthand character classes for regular 
expressions:

• \d: Any digit

• \D: Any non-digit

• \s: Any whitespace

• \S: Any non-whitespace

• \w: Any alphanumeric character

• \W: Any non-alphanumeric character

• \b: Empty string or certain characters at word 
boundaries

• Can be very helpful, but make sure to understand 
what patterns they’re matching before using them

• May be defined differently from what you need!

Natalie Parde - UIC CS 421 14



More about 
shorthand 
character 
classes….
• Can be used inside or outside 

disjunctions

• Can be negated

• Note that different 
programming languages may 
vary in which shorthand 
character classes they offer, 
and how they implement them
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Regular expressions are often trickier 
than they initially seem….

the Fails on: The

[tT]he Fails on: other

^[tT]he$ Fails on: Grab the donut!

16

Create a regular expression to find the set of strings containing the word the, ignoring case.



Errors

• When we match strings that we didn’t 
want to match, we have false positive 
(Type I) errors

• When we don’t match strings that we 
wanted to match, we have false 
negative (Type II) errors
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Errors

• This is a recurring theme in NLP!

• Regardless of what application we’re 
developing, we often try to do two things to 
improve performance:

• Increase accuracy or precision 
(minimizing false positives)

• Increase coverage or recall 
(minimizing false negatives)
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Regular 
Expressions: 
Takeaway Points

• Regular expressions are powerful 
and have many different uses

• Text tokenization

• Text normalization

• Feature extraction

• They allow us to search for specific 
strings of text using disjunctions, 
negations, and special characters
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Assignment 
1 Connection

Write regular expressions for the 
specified formal languages
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This 
Week’s 
Topics
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Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to 
preprocess text

Edit distance



Regular expressions can be matched 
using finite state automata.

• Computational models of states and the transitions between them

• Can be used to model regular expressions, but are also used in other 
applications that function by transitioning between finite states

• Dialogue systems

• Morphological parsing

• Terminology:

• Singular: Finite State Automaton (FSA)

• Plural: Finite State Automata (FSAs)
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Key 
Components

• Finite set of states

• Start state

• Final state

• Set of transitions from one state to another
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How do FSAs work?

• For a given sequence of items (e.g., characters or words) that you hope to 
match, begin in the start state

• If the next item in the sequence can be matched by transitioning to 
another state from the current state, make that transition

• Repeat

• If no transitions are possible, stop

• If the state you stopped in is a final state, accept the sequence
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FSAs are often represented 
graphically.

• Nodes = states

• Arcs = transitions
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q0 q1 q2 q3 q4

b a a

a

!
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What do we 
know about 
this FSA?

• Five states

• q0 is the start state

• q4 is the final (accept) state

• Five transitions

• Alphabet = {a, b, !}
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q0 q1 q2 q3 q4

b a a

a

!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
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Regex that this FSA matches: baa+!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
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Regex that this FSA matches: baa+!
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q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
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Note: More than one FSA can 
correspond to the same test string 
in a regular language!
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q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

Test String: 

baaa!

Test String: 

baaa!
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Formal 
Definition

• A finite state automaton can be specified 
by enumerating the following properties:

• The set of states, Q

• A finite alphabet, Σ

• A start state, q0

• A set of accept/final states, F⊆Q

• A transition function or transition 
matrix between states, δ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ, 
δ(q,i) returns a new state q’∈Q.
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Example: FSA for Dollar Amounts
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q0 q1 q2 q4 q5 q6 q7

q3

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

Eleven

Twelve

Thirteen

Fourteen

Fifteen

Sixteen

Seventeen

Eighteen

Nineteen

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

cents

dollars

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

Ten

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

Eleven

Twelve

Thirteen

Fourteen

Fifteen

Sixteen

Seventeen

Eighteen

Nineteen

Twenty

Thirty

Forty

Fifty

Sixty

Seventy

Eighty

Ninety

One

Two

Three

Four

Five

Six

Seven

Eight

Nine

cents

Accept States
44



State transitions in FSAs can be 
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>

q0

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1  q2

q2

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1  q2  

q2  q3

q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

49



State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

50



State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3 q4

q4C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!
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State transitions in FSAs can be 
represented using tables.
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b a ! <end>

q0 q1   

q1  q2  

q2  q3  

q3  q3 q4 

q4    ☺C
u

rr
e
n
tl
y
 i
n

 S
ta

te

Next Item in Sequence

Accept!

q0 q1 q2 q3 q4

b a a

a

!
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State 
transition 
tables 
simplify the 
process of 
determining 
whether 
your input 
will be 
accepted by 
the FSA. 
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• For a given sequence of items to match, 
begin in the start state with the first 
item in the sequence

• Consult the table …is a transition to 
any other state permissible with the 
current item?

• If so, move to the state indicated by 
the table

• If you make it to the end of your 
sequence and to a final state, accept



Algorithmically, this looks like:

index ← beginning of sequence

current_state ← initial state of FSA

loop:

 if end of sequence has been reached:

  if current_state is an accept state:

   return accept

  else:

   return reject

 else if transition_table[current_state, sequence[index]] is empty:

  return reject

 else:

  current_state ← transition_table[current_state, sequence[index]]

  index ← index + 1

end
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Deterministic vs. Non-Deterministic 
FSAs
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Deterministic FSA: At 
each point in processing 
a sequence, there is one 
valid transition that can 
be made (no choices!)

Non-Deterministic 
FSA: At one or more 
points in processing a 
sequence, there are 
multiple permissible 
transitions (choices!)



Deterministic or Non-Deterministic?
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q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!
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Deterministic or Non-Deterministic?
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If input is a, do this

If input is !, do this

Deterministic! q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!
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Deterministic or Non-Deterministic?
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If input is a, do this

If input is !, do this

Deterministic!

If input is a, do ?
Non-Deterministic!

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!
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Every non-
deterministic 
FSA can be 
converted to a 
deterministic 
FSA.

• Both are equally powerful

• Deterministic FSAs can accept as many 
languages as non-deterministic ones
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Non-
Deterministic 
FSAs: How to 
check for 
input 
acceptance?
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Non-
Deterministic 
FSA Search 
Assumptions
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There is at least one path through 
the FSA for inputs that are 
members of the language defined 
by the FSA

Not all paths through the FSA for 
an “accept” input lead to an accept 
state

No paths through the FSA lead to 
an accept state for inputs that are 
not valid members of the language



Non-
Deterministic 
FSA Search
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• States in the search space are 
pairings of sequence indices and 
states in the FSA

• By keeping track of which states have 
and have not been explored, we can 
systematically explore all the paths 
through an FSA given an input
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Non-
Deterministic 

FSA Search 
Assumptions

• Success: Path is found for a given input 
that ends in an accept

• Failure: All possible paths for a given input 
lead to failure
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Example: Non-Deterministic FSA 
Search
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Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!
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Additional Characteristics of FSAs

• You can apply set operations to any FSA

• Union

• Intersection

• Concatenation

• Negation

• For non-deterministic FSAs, first convert to a deterministic FSA

• To do so, you may need to utilize an ϵ transition

• ϵ transition: Move from one state to another without consuming an item 
from the input sequence
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Summary: 
Regular 
Expressions 
and Finite 
State 
Automata
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• Regular expressions allow us to capture 
patterns defined by regular languages

• Complex regular expressions may be 
most effectively implemented using 
disjunction, negation, or other special 
characters

• FSAs are computational models that 
describe regular languages

• To determine whether an input item is a 
member of an FSA’s language, you can 
process it sequentially from the start to 
(hopefully) the final state

• State transitions in FSAs can be 
represented using tables

• FSAs can be either deterministic or non-
deterministic
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This 
Week’s 
Topics
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Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to 
preprocess text

Edit distance



Finite State 
Transducers

Natalie Parde - UIC CS 421

Finite State Transducer (FST): A special 
type of FSA that describes mappings 
between two sets of items

Each transition is defined by an (input, 
output) pair

FSAs can be converted to FSTs by 
labeling each arc with input and output 
items (e.g., a:b for an input of a and an 
output of b)

77



Example: Simple FST

Start Final

Natalie Parde - UIC CS 421

q0 q1

b:aaa:b b:ϵ

b:b

a:ba
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Formal 
Definition

• A finite state transducer can be specified by 
enumerating the following properties:

• The set of states, Q

• A finite input alphabet, Σ

• A finite output alphabet, Δ

• A start state, q0

• A set of accept/final states, F⊆Q

• A transition function or transition matrix 
between states, δ(q,i)

• An output function giving the set of 
possible outputs for each state and input, 
σ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ, 
δ(q,i) returns a new state q’∈Q.
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Formal 
Properties

• FSTs are compositional: 

• Letting T1 be an FST from I1 to O1, and 

• Letting T2 be an FST from I2 to O2, 

• The two FSTs can be composed such that 
the resulting FST maps directly from I1 to 
O2

• FSTs can be inverted: 

• Letting T be an FST that maps from I to O, 
its inversion (T-1) will map from O to I.
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q0

a:b

q1

a:b

∘ q0

b:c

q1

b:c

= q0

a:c

q1

a:c



Deterministic vs. Non-
Deterministic FSTs
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Just like FSAs, FSTs can 
be non-deterministic 

…one input can be 
translated to many possible 

outputs!

Unlike FSAs, not all non-
deterministic FSTs can be 

converted to 
deterministic FSTs

FSTs with underlying 
deterministic FSAs (at any 

state, a given input maps to 
at most one transition out of 

the state) are called 
sequential transducers
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Examples: Non-Deterministic and 
Sequential (Deterministic) Transducers

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

Non-Deterministic

q0 q1

a:b b:ϵ

b:b

a:ba

Sequential
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When 
can we 
use FSTs 
in NLP?

• Case example: Morphological parsing

• The task of recognizing the component 
morphemes of words (e.g., foxes → fox + 
es) and building structured representations 
of those components

• Morphemes:

• Small meaningful units that make up words

• Stems: The core meaning-bearing units

• Affixes: Bits and pieces that adhere to 
stems and add information

• -ed

• -ing

• -s
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Why is morphological parsing 
necessary?

• Useful for breaking language into more easily interpretable parts

• Morphemes can be productive

• Example: -ing attaches to almost every verb, including brand new words

• “Why are you Instagramming that?”

• Some languages are very morphologically complex

• Uygarlastiramadiklarimizdanmissinizcasina

• Uygar “civilized” + las “become” 

• + tir “cause” + ama “not able” 

• + dik “past” + lar “plural”

• + imiz “p1pl” + dan “abl” 

• + mis “past” + siniz “2pl” + casina “as if” 
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Finite State 
Morphological 
Parsing

cats cat +N +PL

Goal: Take input surface realizations and produce 
morphological parses as output

Natalie Parde - UIC CS 421

Surface Text Morphological Parse

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

goose goose +N +SG

merging merge +V +PresPart

caught catch +V +Past
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Finite State Morphological 
Parsing
reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

q0

q1reg-noun

q2

q3

q4

q5

q6

q7

irreg-sg-noun

irreg-pl-noun

ϵ:+N

ϵ:+N

ϵ:+N

e?s$:+PL

$:+SG

$:+SG

$:+PL
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes 
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat
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foxes fox
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox +N
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat
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foxes fox +N
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Finite State Morphological 
Parsing

f:f

o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N

e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun

fox g o:e o:e s e goose

cat

Natalie Parde - UIC CS 421

foxes fox +N +PL
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Key 
Takeaways: 
Finite State 

Transducers
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• FSTs are FSAs that describe 
mappings between two sets

• All non-deterministic FSAs can be 
converted to deterministic versions, 
but all non-deterministic FSTs cannot

• FSTs with underlying deterministic 
FSAs are called sequential 
transducers

• FSTs are particularly useful for 
morphological parsing
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This 
Week’s 
Topics

Natalie Parde - UIC CS 421 95

Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to 
preprocess text

Edit distance



What are some other 
ways that we can 
preprocess text?

• Text tokenization is an important first step 
for most NLP tasks

• Often implemented using regular expressions

• Typical NLP pipeline:

• Segmenting sentences (if applicable)

• Tokenizing words

• Normalizing word formats (e.g., 
favourite → favorite)
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Sentence Segmentation and Text 
Tokenization

Alice looked all round the table, but there was nothing on it but tea. “I don't see any wine," she remarked.

Natalie Parde - UIC CS 421 97

Tokens

Sentence Segments



How many words in a 
string of text?

• I do uh main- mainly business data processing

• Fragments, filled pauses

• Seuss’s cat in the hat is different from other 
cats! 

• Lemma: Words with the same stem, 
coarse-grained part of speech, and 
general word sense

• cat and cats = same lemma

• Wordform: The full inflected surface form 
of a word

• cat and cats = different wordforms
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Types vs. Tokens

Alice looked all round the table, but there was nothing 
on it but tea.

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?

• 14 tokens (or 16 if punctuation is tokenized 
separately)

• 13 types (or 15 if punctuation is tokenized 
separately)
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Type and Token Counts 
in Popular Datasets

N = number of tokens

V = vocabulary = set of types

|V| is the size of the vocabulary

Natalie Parde - UIC CS 421 100

Dataset
Tokens = 

N

Types = 

|V|

Switchboard phone 

conversations

2.4 million 20K

Shakespeare 884K 31K

Google N-grams 1 trillion 13 million



Tokenization requires many 
individual decisions!

• Finland’s capital  →  Finland ’s or Finland’s ?

• isn’t    →  is not or isn ’t or is n’t ?

• Hewlett-Packard  →  Hewlett Packard or Hewlett-Packard or 
         Hewlett- Packard or Hewlett -Packard ?

• San Francisco  →  one token or two?

• a.m., Ph.D.  →  ??
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Some of these decisions are 
language-specific:

• L'ensemble → one token or two?

• L ? L’ ? Le ?

• Want l’ensemble to match with un ensemble

Contractions

• Lebensversicherungsgesellschaftsangestellter

• life insurance company employee

• 莎拉波娃现在居住在美国东南部的佛罗里达。

• Sharapova now lives in Florida in the southeastern United States.

Tokens Not Delineated by Whitespace
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Tokenization 
in the Age 
of LLMs

• Moving beyond word boundaries to 
subwords and bytes

• Goal: Balance vocabulary size, 
coverage, and efficiency

• With LLMs, tokenization directly affects 
model cost and behavior
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From 
Words to 
Subwords

• Word-level tokenization: May 
lead to out-of-vocabulary 
(OOV) problems

• Subword tokenization breaks 
words into frequent pieces so 
that they can be recombined 
efficiently

• Example: “unhappiness” → [“un”, 
“happi”, “ness”]
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Byte-Pair Encoding

• Common in recent LLMs

• Merges frequent character pairs to form subwords

• Learns which character pairs are frequent using large text 
corpora

• Produces statistically common but non-linguistic units
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Tokenization 
in Practice

N
a
ta

lie
 P

a
rd

e
 - U

IC
 C

S
 4

2
1

106

• ["I", "can't", "believe", "it's", 
"already", "September", "!"]

Word Tokenizer

• ["I", "can", "##’”, "t", "believe", "it", 
"##'", "s", "already", "September", 
"!"]

Subword Tokenizer

• ["I", " can", ”’”, “t”, " believe", " it", 
"'", "s", " already", " September", 
"!"]

Byte-Pair Encoding



Why Tokenization 
Decisions are Important 
in LLMs

• Vocabulary size trade-offs:

• Large vocabulary → Fewer tokens per input 
and bigger embedding table (more in a few 
weeks!)

• Smaller vocabulary → More tokens per input 
and longer token sequences

• The number of tokens you have can impact your 
compute cost

• Token length limits also can constrain prompt 
engineering

• Potential additional complication: Same 
sentence may tokenize differently across 
models
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Text Normalization

• Normalization: Manipulating text such that all forms of the same word match 
(e.g., U.S.A. = USA, flavour = flavor, etc.)

• To normalize text, you must define equivalence classes

• Example: “.” characters in a term → not important

• Words with the same characters but different capitalization are often considered 
equivalent to one another (case folding)

• Example: Hello = hello

• Not a perfect strategy!

• US != us

• Useful equivalence classes vary depending on task

• Capitalization can be very important in sentiment analysis
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Lemmatization

• Reduce inflections or variant forms to base 
form

• am, are, is → be

• car, cars, car's, cars' → car

• the boy's cars are different colors → the 
boy car be differ color

• Tricky because you need to find the correct 
dictionary headword form
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Stemming

• Automatically reduces words to their stems 
using simple rules

• language dependent

• Example: {automate(s), automatic, 
automation} → automat

• Pros: Very quick, simple to implement

• Cons: Groups together some words that don’t 
really mean the same thing, and doesn’t 
group together some words that do mean the 
same thing

• {meanness, meaning} → mean

• {goose} → goos, {geese} → gees
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Porter Stemming

•    Step 1a

• sses → ss  caresses → caress

• ies  → i  ponies   → poni

• ss   → ss  caress   → caress

• s    → ø          cats      → cat

•   Step 1b

• (*v*)ing → ø    walking   → walk

•                 sing      → sing

• (*v*)ed  → ø    plastered → plaster

• …

•    Step 2 (for long stems)

• ational→ ate  relational→ relate

• izer→ ize   digitizer → digitize

• ator→ ate   operator  → operate

• …

•     Step 3 (for longer stems)

• al    → ø        revival    → reviv

• able  → ø      adjustable → adjust

• ate   → ø       activate   → activ

• …
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Much like tokenization, stemming 

methods generally need to be 

customized for specific languages!



Sentence 
Segmentation

• !, ? are relatively unambiguous

• . is more ambiguous

• Sentence boundary

• Abbreviations like Inc. or Dr.

• Numbers like .02% or 4.3

Natalie Parde - UIC CS 421 112



This 
Week’s 
Topics
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Tuesday

Regular expressions

Finite state automata

Thursday

Finite state transducers

Additional ways to 
preprocess text

Edit distance



We know how to preprocess 
strings now …but how can we 

find the distance between 
them?

Popular string (or other sequence) comparison technique:

• Minimum edit distance
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Edit Distance

• Simple way to answer the 
question: How similar are two 
strings?

• Note: This distance is not 
necessarily associated with 
semantic distance

• Also useful for evaluating 
machine translation and word 
error rate
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Minimum 
Edit 
Distance

• Minimum number of editing 
operations needed to 
transform one string into 
another

• Possible editing operations:

• Insertion

• Deletion

• Substitution
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Minimum Edit 
Distance

• Assuming we have the two 
aligned strings on the right:

• If each operation has a cost 
of 1 (Levenshtein distance)

• Distance between these is 5

• If substitutions cost 2 
(alternative also proposed by 
Levenshtein)

• Distance between them is 8

I N T E * N T I O N

* E X E C U T I O N

d s s   i s
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How to find the 
minimum edit distance?

Natalie Parde - UIC CS 421

• Search for a path 
(sequence of edits) from 
the start string to the final 
string:

• Initial state: the word 
we’re transforming

• Operators: insert, 
delete, substitute

• Goal state: the word 
we’re trying to get to

• Path cost: what we 
want to minimize (the 
number of edits)
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However, 
the search 
space of 
all edit 
sequences 
is huge! 
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Formal 
Definition: 
Minimum 
Edit 
Distance

• For two strings

• X of length n 

• Y of length m

• We define D(i,j) as the edit distance 
between X[1..i] and Y[1..j] 

• X[1..i] = the first i characters of X

• The edit distance between X and Y is 
thus D(n,m)
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Intuition: 
Dynamic 
Programming

• Minimum edit distance can be solved 
using dynamic programming

• Stores intermediate outputs in a 
table

• Intuition: If some string B is in the 
optimal path from string A to string 
C, then that path must also include 
the optimal path from A to B

• D(n,m) is computed tabularly, 
combining solutions to subproblems

• Bottom-up

• We compute D(i,j) for small i,j 

• And compute larger D(i,j) based on 
previously computed smaller 
values

• i.e., compute D(i,j) for all i (0 < 
i < n)  and j (0 < j < m)
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Algorithmically, this looks like:

• Initialization
D(i,0) = costins * i

D(0,j) = costdel * j

• Algorithm:
For each  i = 1…n

   For each  j = 1…m

                        D(i-1,j) + costins

         D(i,j)= min   D(i,j-1) + costdel

                        D(i-1,j-1) + costsub; if X(i) ≠ Y(j)   

                                          0; if X(i) = Y(j)

• Termination:
D(N,M) is distance 

Natalie Parde - UIC CS 421
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#
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The Edit Distance Table
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N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421 124



N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2 3 4 5 6 7

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1 2 3 4 5 6 7 6

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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Backtrace for Computing 
Alignments

• We know the minimum edit distance now …but what is the alignment 
between the two strings?

• We can figure this out by maintaining a backtrace

• For each new cell, remember where we came from!

• D(i-1,j) ?

• D(i,j-1) ?

• D(i-1,j-1) ?

• Once we reach the end of the table (upper right corner), we can trace 
backward using these pointers to figure out the alignment
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N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

# 0 1 2 3 4 5 6 7 8 9

# E X E C U T I O N

The Edit Distance Table
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Algorithmically, this looks like:

• Base conditions:                                                          Termination:

D(i,0) = costins * i   D(0,j) = costdel * j         D(N,M) is distance 

• Algorithm:

For each  i = 1…n

  For each  j = 1…m

                       D(i-1,j) + costins

         D(i,j)= min  D(i,j-1) + costdel

                       D(i-1,j-1) + costsub; if X(i) ≠ Y(j)   

                                         0; if X(i) = Y(j)

                     LEFT (INSERT)

         ptr(i,j)=   DOWN (DELETE)

                     DIAG (SUBSTITUTE)
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Assignment 
1 
Connection

Implement minimum edit 
distance!
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